
SSODD
Sixth Sense Omnidirectional Drone Detection

Will Covington, Dominic Keene, Josh Lehman, Danny Mullen

2024 Notre Dame Electrical Engineering Senior Design

Final Report

1

Table of Contents:

Introduction (p. 3)

Detailed System Requirements (p. 6)

Detailed Project Description (p. 8)

System Integration Testing (p. 26)

Users Manual (p. 29)

To-Market Design Changes (p. 30)

Conclusions (p. 31)

Appendices (p. 32)

2

1 Introduction

Small Unmanned Aerial Vehicles (UAV) are becoming increasingly present on the

modern battlefield. This growth in drone usage has become especially apparent in the war in

Ukraine. The sophistication of these drones varies from coordinated swarms with integrated

sensors and communication systems to hobby drones, explosives, and duct tape. Drones can be

used for a multitude of purposes, from surveillance to explosive elimination. In the case of the

latter, a three second warning could be the difference between the life and death of a soldier.

There is no current method for our armed forces to detect incoming drones. Special

Operations Command has tasked us with creating a wearable device that could alert a soldier to

the presence of an incoming UAV.

A detection device would have to be quick, reliable, and unobtrusive. Just like the

detection of conventional ordnance, every millisecond counts. The sooner the user can receive

the alert, the more time he or she has to react. False positives from the device would slow down

operations and wear down the user’s trust in the readings, while false negatives could result in

injury or death of the user. The device should not interfere with the intended force’s range of

motion or add significant payload to their already significant fighting loads.

Our design solution has two drone detection methods, through WiFi sniffing and audio

frequency spectrum analysis. These two methods combine to determine whether what they detect

is actually the presence of an unidentified drone. This determination is then communicated to

any other interconnected systems which send an analog output if there is a drone detected. The

final design includes the basic components that we expected, working more or less as we

3

expected, from the beginning of the semester. The specifics of each component and subsystem do

look substantially different, however.

First, we expected the RF detection method to be a breakout module which would scan

for the presence of a drone, using SPI. We looked at many options and eventually found the

ESP32 WiFi module to be a sufficient alternative. The software for this subsystem also looks

different than expected. In fact, it is the opposite of what we originally expected it to do. At the

beginning of the semester, we thought we were determining what an incoming UAV is. Now, our

final design actually detects what a UAV isn’t. The device must be trained for each location of

use, and then sort detected WiFi signals through a table of knowns, such that an unknown can be

determined as a drone.

The audio sensor system looks most similar to what we expected it to be. We’d originally

intended to use larger directional microphones, but opted for a small electric microphone which

would fit on our board design and work sufficiently to prototype a sound detection system.

Communication between boards looks nearly identical, as we expected to use ESP-NOW

as our protocol. One major difference from our expected design of the network, however, is that

we expected there to be one central board and many satellite boards which would be a simpler

design. In the end, we opted to make each board identical. They could be wired up differently

such that one works solely as a detector and the other solely as an output (as shown in our demo).

However, the great benefit to this design is the flexibility. There could be a hub with many

satellites, or if each board is equipped with all of its capabilities, they could be programmed to

communicate as a mesh network. In the future, it could be worthwhile to test each networking

method to see what makes sense in each individual use case.

4

The subsystem that looks the most different from our proposed system is the sensory

output. A major part of our original proposal was the use of a TENS unit for a “sixth sense”

stimulus output. We’d also considered a wearable wrist watch device which would vibrate as a

warning stimulus. In our final design, however, we used a simple analog output with a vibrating

motor as the stimulus. From the first time we presented our proposal, there was some backlash

against our idea of a TENS unit as the output. Concerns ranged from how sweating and active

movement could impact the TENS staying properly adhered to the user’s body to the safety of

the unit as a whole, potentially leading to shock or muscle paralysis if used or programmed

incorrectly. Additionally, we had significant concerns about the use of a wearable device on the

wrist, as such devices are so ubiquitous that it is almost impossible to distinguish one buzzing

sensation from another. Regardless, we were intrigued by the TENS unit idea and moved forward

with it into the semester. After buying and testing an off-the-shelf TENS unit, we took it apart

and tried to analyze the circuit. It quickly became clear that we would have to create a similar

device from scratch, and after some research it was apparent that the idea could not be achieved

safely in the context of this project. From there we moved forward with a generic analog output

so that it could be weighted, and eventually decided on the vibrating motor to still give a tactile

sensation (without electrocuting any professors who would examine the demonstration).

It is worth noting that a team member had the chance to speak with some of the possible

end-users of the product. They confirmed our notion that a wearable wrist device would be

rendered useless by the sheer number already in circulation. They let us know about a possible

place for our analog output in the heads-up display of developing eye protection technology. We

could not interface with the tech in the timeline of this project, but the analog output we designed

could lead to simple implementation in such a device.

5

In general, our final demonstrated project answers many of the problems we looked to

address, despite the winding paths of design along the way. As in any project, the design process

is not linear, and changes in our plans were to be expected. We recognize the limitations of the

device which will be discussed in later sections, but also look at our project as a first working

prototype of a design which could one day see end use after some iteration.

2 Detailed System Requirements

In order to describe requirements to solve a problem, we must first examine the problem

being addressed. On the modern battlefield, drones are becoming increasingly more common as

a threat for random attacks. Commercial off the shelf drones are relatively cheap, and can easily

be equipped with explosives and driven into groups of soldiers. With ever-increasing drone flight

speed, timing is everything in determining potential danger. While disruption of drone control is

one solution to this, the problem we are addressing is alerting soldiers to the presence of a

harmful UAV with enough time to find safety before an attack occurs.

In general, for our design to be successful, it must be fast, reliable, and unobtrusive. The

earlier a drone can be detected and that information can be communicated, the faster a user can

find safety, greatly reducing the likelihood of casualty. Reliability is crucial in a twofold manner.

An overwhelming number of false positives would slow down operation of both the device itself

and any military unit which may be using it. This could also create a lack of trust in the system in

a “boy who cried wolf” scenario, where the user may learn to ignore warnings and eventually

ignore the warning of a legitimate threat. On the other hand of reliability, false negatives would

render the device useless, not performing its basic function of drone detection. One priority in

the design is making it as small and unobtrusive as possible. Soldiers are already carrying

6

significant loads, and this device should increase safety without being overbearing. A prototype

will prioritize smaller devices and a simple board design with minimal surface area.

Additionally, there are some more specific requirements for this particular design which

will be necessary for success. These can add on to or partially address the above general design

requirements.

First, our system should include multiple types of redundancy. This could be in the form

of multiple boards working together in parallel, such that if one fails and the other detects, both

output the same signal. It could also be in the form of multiple detection methods. We chose to

address this by having both WiFi sniffing and audio frequency spectrum analysis as detection

methods, inherently increasing the reliability and usability of the overall system.

The system must be able to communicate with other similar systems. This could look

differently depending on the use case, but some ideas include a spoke and wheel design, with one

central sensing unit and multiple “satellite” units which give a stimulus output upon receiving a

signal from the central unit. Alternatively, a mesh network of many sensing units, each with

sensory output and communication capabilities, would satisfy this design requirement.

While not necessarily addressing the potential final product, the nature of our prototype

which will be presented for senior design is that we should design a modular system. The board

design should align with this such that any mistake in one section will not ruin all other

subsystems, and different boards could be connected as needed. In the context of a final product,

a modular design will include the ability to act as either the mesh or hub and satellite network as

described above, depending on the software implementation.

The desire of the project is to work towards a sensory stimulus output, weighted

depending on the detected and calculated threat level. This leads to a requirement for a reliable,

7

analog hardware output which could be connected in a multitude of ways. Originally, the idea

was to use a TENS or related system as a tactile sensory output. With a generic analog output

design, this could easily be translated from tactile to visual or audio output as desired.

For end use, our design should be battery powered, compatible with portable packs

currently used in industry. With that being said, there may be limited power access in end use

cases, and the design should minimize power consumption as much as possible. We recognize

that future iterations of the prototype could continuously address more energy-efficient options.

3 Detailed project description

3.1 System theory of operation

The system works largely as expected and designed throughout the semester. Two

detection systems come together in an algorithm to produce an output which is then

communicated between boards.

The first detection system uses WiFi sniffing in the 2.4GHz range to determine potential

threats. The hardware in this system is based entirely on the WiFi compatibility of the ESP32.

This system is constantly reading local MAC addresses and comparing the UOIs (first 3 bits) of

each with known addresses in a lookup table. The device would need to be trained for each

location of use, adding known addresses to the table. This method, rather than searching for the

drone, actually sees what it knows is not a drone. From there, unknown addresses that pass

through the lookup can be identified as a threat (or at least some unknown which should be

investigated).

The second detection system is a frequency spectrum analyzer. The only piece of

hardware is a small, electric microphone which outputs a frequency spectrum of all audio it picks

up. This passes through a designed analyzer which determines if detected frequencies in the

8

100-300 Hz range are above a certain threshold defined by the design. This gives an output based

on whether or not the threshold is broken, but could be adjusted to give an output based on

multiple thresholds to weight multiple threat levels.

These two detection systems come together to determine drone identification. If the first

(WiFi) system is positive, an analog output is sent to a vibrating motor in the prototype. If the

second (audio) system backs up a positive result, the output vibration is magnified. For

demonstration purposes, the detection systems were running on one board while the analog

output was on a second board. The two boards communicate via ESP-NOW. Each of these

systems are described in added detail in the following sections.

3.2 System Block diagram

9

Figure 1: Hardware Block Diagram

10

Figure 2: Overall Software Diagram

11

3.3 Detailed design/operation of subsystem 1

Subsystem 1: Wifi Snooping

The Wifi Snooping subsystem is characterized by two main parts: reading in mac

addresses and inferencing. From a high level, the system sits at a state of standby with the ESP32

set in promiscuous mode. For a set period of time, defined as

WIFI_CHANNEL_SWITCH_INTERVAL, the ESP receives a packet in the current WiFI

channel. It then moves to the next channel and performs the same snooping operation. The ESP

repeats this sweep through 13 Wifi channels indefinitely.

To initialize Wifi snooping, we first must set the ESP32 to the correct modes and

initialize its operation properly. This is mostly performed within the wifi_sniffer_init() function,

as found beginning in line . This function first initializes the system components required to

utilize Wifi, such as non-volatile storage (nvs_flash_init()) to store Wifi configurations, TCP/IP

networking (tcpip_adapter_init()), and the ESP32 event handler such that it can handle Wifi

operations such as connections and disconnection (esp_event_loop_init()). It then initializes the

ESP32’s Wifi snooping capabilities as follows; we set our config ‘cfg’ to the default wifi

configuration (WIFI_INIT_CONFIG_DEFAULT()) and passes this object into the the

esp_wifi_init() function, sets the wifi country to the United States, tells the wifi driver where it is

allowed to store data (esp_wifi_set_storage), starts the wifi driver code (esp_wifi_start), sets the

wifi mode to promiscuous (esp_wifi_set_promiscuous(true)), and assigns a callback function to

each packet received in promiscuous mode (esp_wifi_set_promiscuous_rx_cb()). This callback

function handles the processing and inference related to our system. It is also important to note

that the sniffer initialization function sets the max transmit power. This setting is not directly

related to the wifi snooping operations and will be described in the ESPNOW communication

12

section. The imported libraries that allow the previously functionalities to be defined are

esp_wifi.h, esp_wifi_types.h, esp_system.h, esp_event.h, esp_event_loop.h, and nvs_flash.h.

Several other functions must also be defined to support the Wifi snooping operation. We

assign an event handler that allows us to catch errors based on whether or not the ESP has

properly handled each Wifi snooping action. We assign a function that sets the channel of our

system snoops in, which is then updated in each loop. We define two other functions;

wifi_sniffer_packet_type2str() converts the wifi packet type to a string, which allows us to parse

the type of packet we are interested in snooping, and our callback function

wifi_sniffer_packet_handler().

In order to understand how our packet handler function parses the received data for its

mac address and allows us to perform our snooping algorithm, we must first define the structs

used to handle the incoming wifi packet. We first define a struct called

wifi_ieee80211_mac_hdr_t, which stores the intended receiver’s address the sender’s address,

and the filtering address, along with three other fields that store information about the packet

frame, duration, and ordering of sent data. Secondly, we define the struct

wifi_ieee80211_packet_t to store our previously defined struct and the data payload, which we

discard.

13

Figure 3: WiFi Snooping Flowchart

The second part of the Wifi Snooping Subsystem is the inference algorithm. This

algorithm was developed with the intention of employing the first three bytes of the Mac

Address, the Unique Organizational Identifier. The algorithm works in tandem with the Wifi

snooping because the only data it requires is the first three bytes of each mac address. The

structure of a mac address can be found below in Figure 4.

14

Figure 4: MAC Address Structure

By leveraging OUI’s, we are able to reliably determine which mac addresses are known

not to be a drone. Upon our initial testing of an off the shelf (OTS) drone, we found that the

organization who designed the chip was a company called Buffalo Inc. We quickly recognized

that developing a database of UOIs that are employed in drones would be a significant challenge,

and would fare poorly on a battlefield. For example, if the UOI is not registered with Wireshark’s

Manufacturer Database, an algorithm that simply searches for known chips in drones would

totally fail and provide no threat warning to those dependent on the system.

15

Figure 5: Lookup Table

As a result, we elected to design our system deductively. We reasoned that it would be

more favorable if the system alerted operators as a false alarm due to an unknown device within

range than if the system was unable to recognize a drone’s UOI. Thus, we designed the system to

parse incoming UOI’s based on known devices, such as Apple, Microsoft, Intel, Cisco, etc., and

make an inference based on this parsing.

The algorithm performing inference is displayed in Figure 6. The algorithm begins by

receiving a mac address from the Wifi Snooper and verifying whether or not its most significant

byte is divisible by 4. The operation is intended to filter out mac addresses that have been

randomized for encryption methods. UOIs are assigned such that the most significant byte is a

multiple of 4, such as 00, 04, 08, 0C, 10, etc.. We define the filtering of randomized UOIs as a

parameter of our project, since de-encrypting and inferencing based on encrypted addresses

could be a whole project on its own. Once this filtering is performed, we compare the UOI to a

lookup table of UOIs that was built from the Wireshark Manufacturers Databases shown in

Figure 5.

16

Figure 6: WiFi Snooping Algorithm

The lookup database was designed to filter out known mac addresses. Given that this

project was designed and tested in the buildings around Notre Dame’s campus, the existing

lookup table is biased toward devices that could be found on a college campus. For example, the

existing table contains UOIs from Apple, Microsoft, Cisco, Intel, Espressif, Hewlett Packard,

and a range of other devices picked up by the Wifi snooper during testing.

If the mac address that was read in makes it past randomized UOI filtering and the lookup

database, it is passed into a buffer. This buffer is initialized to ten devices long, which is an

optimization we found during testing. With a well-designed lookup table, much of the network

traffic is filtered out in the second stage of the algorithm. Therefore, we can improve our

compute performance by keeping the buffer short, which will come into fruition in the final stage

of the algorithm. If a UOI is added to the buffer, we assign it a count so that each time the same

UOI is processed, we can add to this count and determine how many packets have been

accumulated from that particular device.

17

After the Wifi snooper has received 150 packets, the algorithm loops through the buffer

and computes the maximum number of packets received for the UOIs existing in the buffer. This

number is then compared to a threshold of 5 packets, which determines whether or not the

system will declare the device as a drone. If the maximum is higher than the threshold, the audio

spectrum analyzer takes in its required data and determines a threat level, which is then passed to

ESPNOW transmitting routine. If the maximum is not above the threshold, we pass a message

that the drone has not been found and the ESPNOW routine is called. Finally, the buffer is

cleared and the process restarts.

The definition of 150 packets as the length of one snooping session was defined primarily

by two parameters: latency and accuracy. We intended to keep our inference latency as low as

possible given the necessity for a quick notification and the error rate of ESPNOW. For accuracy,

we found that a session of 150 packets and a threshold of 5 packets performed best in testing due

to its ability to allow enough drone packets to surpass the threshold without allowing the number

of mac addresses that sneak pass filtering to accumulate in the buffer. The session length could

also have been determined by the channel switching time or by allowing some number of full

channel sweeps before inferencing, but we figured that parametrizing the algorithm based on the

number of received packets will allow us to make more reliable inference in both congested and

non-congested environments.

18

Subsystem 2: ESPNOW Communication

The ESPNOW subsystem consists of a single sender and single receiver. The subsystem

is designed with the intent that one sender would send to several receiving devices, acting as a

functional system for a team of operators. The system was tested with several receivers, but the

latency of a reliable ESPNOW communication multiple receivers at a time (or even in

succession) led us to the decision to keep our final working product as a single sender and a

single receiver.

The ESPNOW communication subsystem includes the esp_now.h and Wifi.h libraries.

Similar to the wifi snooping, the ESPNOW communication needs to be initialized properly

before any packets are sent. The first step of this initialization is to define a struct that will hold

the information sent and received for each packet. This struct must be defined the same in both

the sender code and the receiver code. In the sender code, we define a callback function for

sending data, which will be defined later. Similarly, the receiver requires a callback function for

receiving data.

To initialize the ESP32 to send data using ESPNOW, we must first declare the Wifi mode

to be “Station” and call the initialization function esp_now_init(). We then must register the

callback function as a callback function, and add the address we intend to broadcast to into our

peer list. To initialize the ESP32 to send data using ESPNOW, we follow a similar process. We

initialize ESPNOW with the same function, and we register our callback function for receiving

data.

As the project progressed, we realized that the ESPNOW communication was very

finicky and if a packet was sent only a single time, the likelihood that it was received was low.

This realization determined the design of our communication system. Once the wifi snooping

19

algorithm was complete, a packet is sent to the receiver address expressing whether or not a

drone had been identified. When this packet is sent, the callback function is called. We designed

the callback function to check the status of the sent packet for an acknowledgement from the

receiver of a successful delivery. If the status defines a failed delivery, we delay the system

500ms using vTaskDelay and then resend the packet. We continue this process either until the

sender is acknowledged of a successful delivery or until we try resending ten times. After ten

attempts, we declare the communication a failure and the system returns to standby

The receiver board waits in a constant state of standby listening for an ESPNOW packet.

When it receives a packet, it decodes the packet’s information and interfaces with our analog

stimulus subsystem by assigning the information stored in the packet as our analogwrite value.

Figure 7: ESP-NOW Flowchart

The ESPNOW communication was tested in various environments and appear to function

most effectively when both boards were facing toward each other and location away from nearby

20

routers. When we initialize ESPNOW, we set it to wifi channel zero and do not change the

channel during operation. We suspect that since ESPNOW is not performing dynamic channel

switching like other Wifi devices, its signals are being clobbered by other devices in the area.

This appears most obvious when operating near a router, as the communication between two

boards fails all ten sending attempts very frequently. To solve this problem, we initialize the wifi

transmit power setting to its highest setting, but we were unable to find a robust implementation

of ESPNOW where most packets were received in the first sending attempt.

3.4 Subsystem 3: Audio Spectrum Analyzer Sensor

The second major sensing subsystem is the audio spectrum analyzer. The concept of the

subsystem is to take in analog audio data, perform an FFT on it to see the frequency spectrum of

the audio, and look at a specific range of frequencies that we know to be generated by the

spinning of quadcopter propellers (roughly 200 - 500 Hz). If the power of the frequencies in that

range is high enough, the system interprets this as a drone being nearby and, if a wireless signal

is also detected, sets the detected threat level to 5 (the highest level). A block diagram of this

subsystem can be seen below.

Figure 8: Audio Subsystem Flowchart

21

Once analog data from the microphone has been sampled using an analogRead command

on pin 4 collecting 256 samples at a rate of 8000 samples/sec, an instance of an ArduinoFFT

object is created and is used to remove the DC offset from the data. Next an FFT is performed on

the data using Hamming windowing and finally the complex results of the FFT are converted to

magnitudes using the ArduinoFFT library. The resulting vector contains the magnitudes for a

wide range of frequencies. This vector is searched through to find the magnitudes of the

frequencies in the 200-500 Hz range and the magnitude of each of these frequencies is checked

using a threshold of 40. If one of the frequencies in this range crosses the threshold, it is defined

as having detected a drone, and the drone.d threat level is set to 5. This code can be seen below.

While this subsystem does work, it could be drastically improved in later iterations. The

major problem with the system is that it is incredibly easy to trigger a false positive due to

background noise. This could possibly be fixed by using higher quality microphones or dishes to

collect sound, but it could also likely be improved by changing the threshold that the magnitude

22

of the frequencies must reach as well as perhaps requiring a grouping of frequency components

to cross the threshold as opposed to just one, which could easily be an anomaly. One of the

suggestions made to us during demo day was the use of a ROC (Receiver Operating

Characteristic) curve, which would allow us to plot the number of false positives vs false

negatives we are getting with various threshold settings to dial in the best possible measurement

criteria.

3.5 Subsystem 4: Analog Sensory Output

The analog sensory output subsystem’s purpose is to alert the device’s user of an

incoming drone. The subsystem original plan for the subsystem was to use a TENS

(Transcutaneous Electrical Nerve Stimulation) unit to deliver a moderate electrical current

through the skin of the back, creating a tingling sensation proportional in intensity to the

intensity of the threat perceived by the system. After initial tests we realized that the TENS unit

would be large and clunky, and one of our goals was to create a device that would be as small

and unobtrusive as possible. We also had safety concerns about designing our own TENS unit as

the process involves higher voltages and currents that could harm a user if it malfunctioned.

Our second design for the sensory output was a simple vibration motor that could be

attached to a glove or to somewhere on the body. The intensity of the motor’s vibration would

immediately signal to the user the likelihood of an incoming drone attack. The vibrating motors

we purchased off of Amazon were quite small (10mm x 3mm) and operate at a voltage range of

2.5 - 3.7 V DC with a rated speed of 12,000 RPM. The ground wire of the motor was connected

to the ground pin of the board through connector J4. The signal wire of the motor was connected

to analog pin 5 of the ESP32 through J4. A flow chart for the operation of the subsystem can be

seen below.

23

Figure 9: Analog Sensory Flowchart

The code for operating the sensory output can be split into two segments: the code for the

unit that senses drones and broadcasts a threat level, and the code for all receiver units that turn

the threat level into a sensory stimulus. The broadcaster unit code can be seen below.

Figure 10: Analog Output Code

Essentially, after searching for both wireless and auditory signs of drones, one of three

values is assigned to the threat level object drone.d. If a wireless signal for a drone is found but

there is no auditory sign of drone presence, drone.d is set to 3. If both wireless and auditory

24

signals are sensed, drone.d is set to 5. If neither signal is sensed, drone.d is set to 0. There is

currently no code for if only an auditory signal is sensed because the auditory signal is currently

much more prone to false positives due to poor quality microphones, so an auditory signal is

currently only being searched for if a wireless signal has already been found. In future iterations

of this project with more sensitive hardware the code could be changed to also set drone.d to 3 if

only an audio signal is detected. Once a value of drone.d has been set, it is broadcasted to all

other units in the area, and the value is processed by the receiver code below.

Figure 11: Broadcast Code

The receiver code operates by taking the value of drone.d and performing an analogWrite

command to the pin designated as ALERT (we use pin 5) to turn the motor on to a specific

intensity based on the received threat level. If drone.d is 3 or 5, the analogWrite command sets

the motor to a level of 153 or 255 respectively. If drone.d is 0, the analogWrite command turns

off the motor by setting it to zero.

25

4 System Integration Testing

4.1 Describe how the integrated set of subsystems was tested.

To integrate our subsystems we started by testing each subsystem separately. For the

wireless subsystem we checked to make sure that turning on the drone nearby would display a

message in the serial port stating that a drone was found. For the audio subsystem we used an

LED that would turn on when the frequency of the drones propellers was sensed and tested it

with audio recordings of those frequencies. To test the ESPNow communication between chips

we checked to make sure that a message could be sent from one ESP32 development board to the

other.

The next step was to design a board schematic and layout that would include all the

necessary pieces (ESP32, CP2012 for USB programming, pins for connecting the vibrating

motor and the microphone, USB-C and battery ports, etc) for both the sensing and receiving

board configurations. When the completed boards arrived we built them and tested to see

whether the boards were programmable. An issue was discovered in uploading our code to the

boards, and after comparing with the schematic and testing for continuity between pieces, it was

discovered that the ground connections underneath the ESP32 were not making a solid

connection, but that mild pressure applied to the chip would make the connection, so the issue

was solved by using binder clips to hold down the chip. Once the boards were programmable we

made two configurations of the board, one with a microphone for sensing and one with a motor

for providing stimulus based on received data from the sensing unit. After our hardware was

properly configured, it was time to begin code integration.

To begin our code integration we started by integrating the code for the wireless sensor

and the audio spectrum analyzer together to create a program that would continuously search for

26

wireless signals, and if a drone’s signal was found, search for audio signals. We decided not to

continuously search for both wireless and audio signals at the same time for two reasons: first, to

save processing power on the ESP32, and second because the audio sensor was so sensitive that

many of its readings were false positives if the room got too noisy. The combination of these two

subsystems would output a threat level of either 0 (no drone), 3 (wifi signal detected but no

audio) or 5 (wifi and audio detected). Once we found that the integrated subsystems were

properly sensing a drone we integrated the ESPNow communication between boards and verified

that the receiver board was properly receiving the threat level from the sensing board. The final

step of integration was installing the vibration motor on the receiver board and integrating the

code on the receiver board to change the motor’s vibration based on received threat level. When

this was all working properly we were ready for demo day.

4.2 Show how the testing demonstrates that the overall system meets the design

requirements

In our final testing/demo of the project we tied down a drone to a nearby handrail and set

up a sensing unit with a microphone and a receiving unit with a vibrating motor. When the drone

was off the motor did not buzz, showing that no drones were within the range of the device.

One or two times during the demo day strange devices that were not on our MAC address

lookup list entered the range and triggered a low threat level, but we were able to update our list

as this happened. This was an expected difficulty, and a part of our setup of the device involves

excluding the MAC addresses of the types of devices you expect to encounter in your specific

environment as devices that appear to be “atypical” will change based on where the device is

used.

27

When the drone was turned on it was automatically detected by the sensor unit and the

threat level was sent to the receiver unit, resulting in a low intensity vibration signaling a

possible drone in the location. The only issue that we encountered in the final testing of this part

of the system was that occasionally ESPNow would fail to send the packet containing the

updated threat level from the sensing unit to the receiving unit, resulting in a latency in the

change of the vibration based on threat level. In a future iteration of the project we would fix this

with a better antenna.

Once a drone had been detected via WiFi, the audio spectrum analyzer system

would start searching for the sound of drone propellers. We would rev up the drone’s propellers

since it was tied down and wouldn’t move, and the sound of the rotors would activate the higher

threat level resulting in a more intense vibration. This was the area where our final test struggled

the most on demo day as the high level of ambient noise in the room from all the visitors and

other teams would frequently trigger the high threat level as other groups would end up making a

sound in the frequency range momentarily, triggering the system, and then the high latency

between the sensor and the receiver would mean that the motor would continue to vibrate at a

high threat level for some time even though there was no propeller movement. This could be

fixed in a future iteration by raising the threshold for triggering the system and requiring a

grouping of frequencies to meet the threshold instead of only one. Even with issues of our

sensitivity being too high, the unit always successfully picked up the sound of the drone’s

propellers and translated it to a high threat level that would result in the motor vibrating at its

most intense level.

We believe that this demo showed that we had met our design requirements by accurately

detecting a drone in a location using a two-factor sensing method (wireless and audio) and

28

producing some sort of sensory feedback (vibration motor) that could be interpreted as various

levels of threat from a drone attack.

5 Users Manual

5.1 How to install your product

Our boards are designed with the intention of being modular, so each board is capable of

acting as the main sensor or as a satellite receiver. The product would likely be installed on the

equipment of a team of operators, with each individual operator possessing their own board.

From our initial vision, the sensor board would be attached to the helmet of the designated

“drone” operator, i.e. the team member who is responsible for administering threats

electronically and notifying other team members. Our current analog stimulus is intended to be

placed on the non-dominant arm of each operator, assuming that the dominant hand is required

for tasks that are best not interrupted. With this setup, the board should be placed in the front

pack of each operator such that it is not subject to significant force or motion. In an iteration of

our product that is ready for use, we intend to place a protective covering around the board to

mitigate any forceful impacts.

5.2 How to setup your product

For the WiFi detection to work, it must be “trained” for its location of use. Expected

MAC addresses must be added to the lookup table, and it is recommended to test the device

multiple times at various locations to detect any unexpected, friendly, MAC addresses. This is

inherently different for each location, and in our demonstration case it is set for the environment

at Notre Dame. It is expected that more complex or variable unknowns could be present in the

environment of the intended use case.

29

5.3 How the user can tell if the product is working

It is clear that the product is working if the analog output is activated upon detection of

an unrecognized MAC address. This confirms the working state of the detection,

communication, and output protocol. Additionally, if a tone in the 200-500 Hz range is played

and the output is amplified, users can confirm the operation of the audio analysis.

5.4 How the user can troubleshoot the product

To troubleshoot, users must identify which subsystems are malfunctioning. For the

prototype, much of the troubleshooting must be done via a serial monitor. The WiFi detection

system outputs the MAC addresses of any unrecognized signal when detected. The audio system

can also output frequency ranges above the defined threshold as they are detected to the serial

monitor. If either of these are not working properly, there is a clear problem with the detection

systems. Next, it is necessary to troubleshoot the output. In the prototype, one can simply send a

high analog signal to the vibrating motor to make sure it is working properly. If all of these work,

then the issue lies with the ESP-NOW communication between multiple boards. Common issues

arise here including the communication being blocked on popular WiFi channels.

6 To-Market Design Changes

On April 25th, our team got the opportunity to present our research to end users and

USSOCOM tech developers at the SOCOM Ignite closing ceremony in Boston, Massachusetts.

These stakeholders’ direct input gave us insight for how our design should be further developed.

Chief among these was a suggestion for the device’s stimulus given to us by the Command

Sergeant Major of SEAL Team Six. He told us that SOF was currently developing a set of eye

protection with a heads up display built into the lenses. He suggested that we move from a

physical stimulus to an alert that flashes over the operator’s eyes. While the challenge originally

30

given to us was to design a wearable device, end users noted that too many wearables are

currently being implemented, cluttering the forearm. Switching to a heads up display method

will allow us to transfer the location of our board to anywhere on the operator’s kit. Another

concern was frequent false alarms. It is human nature to dismiss warnings after too many false

alarms. To counter this, we can develop a threshold in the code that does not alert the operator

unless the threat level is high.

We would like to improve our minimum viable product by increasing the quality of our

sensors. Rather than our current microphone, we would like to use four long distance directional

microphones. The greater distance that we can hear the propellers, the more time the operators

have to react. We would also like to employ stronger antennas to prevent frequent failures in

packet sending from one board to another.

7 Conclusions

Our team was challenged by the United States Special Operations Command to develop a

wearable early warning device for drone detection. Hobby drones paired with explosives are

becoming more and more present on the battlefield, and special forces do not currently have a

method for detecting these threats.

Our device detects drones on the battlefield through sniffing WiFi communications

between the drone and its controller and listening in for the distinct sound of drone propellers. A

master board detects the signal and sound and calculates a threat likelihood level. This threat

likelihood level is broadcast to all other boards in the area, and a physical stimulus is output

proportional to the threat likelihood level.

31

In order to identify a drone from its wifi communication, we sniff nearby networks for

packets. In each packet’s header exists a Unique Organizational Identifier. We compare this UOI

to a lookup table of common UOIs that we know are not threats. Unrecognizable UOIs are

considered possible drones. When enough packets are flagged as possible drones, the threat

likelihood level increases.

To detect a drone based on sound, we read in ambient microphone data. A Fast Fourier

Transform is performed on the data. If there is a high enough spike at the key range of 200 Hz to

500 Hz, the threat likelihood increases.

We would improve our design by increasing the quality of our sensors. Particularly,

improving our microphone to four long distance directional microphones in order to provide data

on direction as it could add vital information for the output. A final product would also interface

with the aforementioned developing heads-up-display included in the wearable eye protection.

Another optimization of the design is mesh networking, allowing multiple sensors to

communicate and provide localized data based on RSSI measurements from each sensor.

In conclusion, our project did achieve the end goals we set forth in the beginning of the

process, despite some changes along the way. The robust system can successfully detect a drone,

but there are several areas which can be improved in future iterations as outlined. We believe that

our research and implementation could at some point provide a valuable resource for SOCOM

and the future development of similar products.

8 Appendices

8.1 Hardware Schematics and Layout

32

SSODD Board Schematic

33

SSODD Board Layout: J1 connector is for battery connection if not using USB-C power, J2
connects to USB-C for power and programming, J3 connects to an amplified electret microphone
for audio spectrum analysis, J4 is connected to programmable analog pin 5 for sensory stimulus

output, while J5 serves as a low side switch as another possible option for sensory stimulus
output.

8.2 Software Listings

34

WiFi Snooping/Sensor Code:

#include "esp_wifi.h"

#include "esp_wifi_types.h"

#include "esp_system.h"

#include "esp_event.h"

#include "esp_event_loop.h"

#include "nvs_flash.h"

#include "driver/gpio.h"

#include "stdlib.h"

#include "Arduino.h"

#include <esp_now.h>

#include <WiFi.h>

#include <Wire.h>

#include <string.h>

#include "arduinoFFT.h"

#define LED_GPIO_PIN 5

#define WIFI_CHANNEL_SWITCH_INTERVAL (500)

#define WIFI_CHANNEL_MAX (13)

#define DEVICE_COUNT 10

#define DATABASE_COUNT 89

#define MAX_SENDS 10

#define RETRY_DELAY_MS 500

const uint16_t samples = 256; //This value MUST ALWAYS be a power of 2

const double samplingFrequency = 8000;

unsigned int sampling_period_us;

unsigned long microseconds;

#define CHANNEL 4

#define SCL_INDEX 0x00

#define SCL_TIME 0x01

#define SCL_FREQUENCY 0x02

35

#define SCL_PLOT 0x03

uint8_t level = 0, channel = 1;

esp_now_peer_info_t peerInfo;

static wifi_country_t wifi_country = {.cc="CN", .schan = 1, .nchan = 13};

//Most recent esp32 library struct

int lookup[DEVICE_COUNT][4];

int next_open_slot = 0;

int total_packets = 0;

int retryAttempts = 0;

int database[DATABASE_COUNT][3] = {{132, 241, 71}, // Cisco Systems, Inc

{28, 95, 43}, // D-Link International

{60, 70, 216}, //Tp-Link Technologies Co.,Ltd.

{220, 133, 222}, //AzureWave Technology Inc

{252, 170, 129}, // Apple, Inc.

{56, 104, 147},//Intel Corporate

{184, 138, 96}, // Intel Corporate

{204, 71, 64}, //AzureWave Technology Inc.

{40, 146, 74}, // Hewlett Packard

{72, 137, 231}, // Intel

{216,58, 221}, // Raspberry Pi Trading Ltd

{68, 218, 48}, //Apple, Inc.

{208, 83, 73}, // Liteon Technology Corporation.

{216, 58, 221}, // Raspberry Pi Trading Ltd

{244, 212, 136}, // Apple, Inc.

{220, 133,222}, // AzureWave Technology Inc.

{84, 50, 199}, // Apple, Inc.

{52, 225, 45}, // Intel Corporate

{208, 63, 170}, // Apple, Inc.

{56, 249, 211}, // Apple, Inc.

{36, 246, 119}, // Apple, Inc

{76, 68, 91}, // Intel Corporate

{132, 239, 24}, //Intel Corporate

{88, 185, 101}, //Apple, Inc.

{220, 233, 148}, //Cloud Network Technology

Singapore Pte. Ltd.

{144, 72, 154},// Hon Hai Precision Ind. Co.,Ltd.

{236, 92, 104}, // Chongqing Fugui Electronics

Co.,Ltd.

36

{16, 104, 56}, // AzureWave Technology Inc.

{64, 236, 153}, // Intel Corporate

{212, 109, 109}, // Intel Corporate

{140, 69, 0}, // Murata Manufacturing Co., Ltd.

{116, 4, 241}, // Intel Corporate

{184, 17, 75}, // Cisco Systems, Inc

{144, 76, 229}, // Hewlett Packard Enterprise â€“

WW Corporate

{224, 208, 69}, // Intel Corporate

{200, 137, 243}, // Apple, Inc.

{40, 193, 160}, // Apple, Inc

{60, 33, 156}, // Intel

{208, 57, 87}, // Liteon Technology Corporation

{64, 26, 88}, //Wistron Neweb Corporation

{104, 122, 100}, // Intel Corporate

{28, 134, 130}, // Apple, Inc

{216, 93, 76}, // Tp-Link Technologies Co.,Ltd.

{0x20, 0x9C, 0xB4}, // Hewlett Packard

{0x2C, 0x4D, 0x54}, //ASUSTek COMPUTER INC.

{0xDC, 0x21, 0x5C}, // Intel Corporate

{0xA8, 0x8F, 0xD9}, // Apple, Inc.

{0x98, 0xA8, 0x65},// Intel

{0x90, 0xE8, 0x68},//AzureWave Technology Inc.

{0xD8, 0xBE, 0x1F}, // Apple Inc

{0x98, 0xAF, 0x65}, // Intel

{0xAC, 0xC9, 0x06}, // Apple

{0xB8, 0xA5, 0x35}, // Vantiva

{0x60, 0x3D, 0x26}, // Vantiva

{0x94, 0x6A,0x77}, // Vantiva

{0x70, 0xA7, 0x41}, //Ubiquiti Inc

{0xD8, 0x8E, 0xD4}, //eero inc.

{0x60, 0x22, 0x32}, //Ubiquiti Inc

{0x6C, 0x4B, 0xB4},// HUMAX Co., Ltd.

{0xB8, 0x5E, 0x71}, // VantivaUSA

{0xC0, 0x94, 0x35}, //ARRISGroup

{0xF8, 0x9E, 0x28}, // CiscoMeraki

{0x48, 0xA2, 0xE6}, // Resideo

{0xE8, 0x48, 0xB8}, //TPLink

{0x80, 0xCC, 0x9C},//Netgear

{0x2C, 0x5A, 0x0F}, //Cisco Systems, Inc

37

{0x2C, 0x76, 0x8A}, //Hewlett Packard

{0x74, 0x3A, 0xF4}, // Intel Corporate

{0xB0, 0xBE, 0x76},

{0x00, 0x45, 0xE2 },

{0x64, 0xBC, 0x58},

{0xC4, 0xBD, 0xE5},

{0xD4, 0xF9, 0x8D},

{0x1C, 0x71, 0x25},

{0xB0, 0x68, 0xE6},

{0xF8, 0xFF, 0xC2},

{0x54, 0x35, 0x30},

{0x64, 0xD6, 0x9A},

{0xC8, 0x2E, 0x18},

{0xE8, 0x5F, 0x02},

{0x08, 0xE6, 0x89},

{0x3C, 0xE9, 0x0E}, // ESPRESSIF

{0xC0, 0xB5, 0xD7}, //Chongqing Fugui Electronics

Co.,Ltd.

{0x00, 0x15, 0x61},

{0x1C, 0x57, 0xDC},

{0xC8, 0xB2, 0x9B},

{0xDC, 0xDA, 0x0C},

{0xC8, 0x5E,0xA9},

{0x3C, 0x22, 0xFB}};

typedef struct {

unsigned frame_ctrl:16;

unsigned duration_id:16;

uint8_t addr1[6]; /* receiver address */

uint8_t addr2[6]; /* sender address */

uint8_t addr3[6]; /* filtering address */

unsigned sequence_ctrl:16;

uint8_t addr4[6]; /* optional */

} wifi_ieee80211_mac_hdr_t;

//uint8_t broadcastAddress[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xA4, 0xE0}; //

SSOD board 1

uint8_t broadcastAddress2[] = {0xDC, 0xDA, 0x0C, 0xFD, 0xEE, 0x54}; //

SSOD board 2

38

//uint8_t broadcastAddress3[] = {0xDC, 0xDA, 0x0C, 0xFD, 0xEE, 0x50}; //

SSOD board 3

String success;

void addEspNowPeer(uint8_t *macAddr) {

esp_now_peer_info_t peerInfo = {};

memcpy(peerInfo.peer_addr, macAddr, 6);

peerInfo.channel = 0; // use the current channel

peerInfo.encrypt = false;

// Add peer

if (esp_now_add_peer(&peerInfo) != ESP_OK) {

Serial.println("Failed to add peer");

}

}

//Structure example to send data

//Must match the receiver structure

typedef struct struct_message {

char a[32];

int b;

int c;

int d;

} struct_message;

double vReal[samples];

double vImag[samples];

/* Create FFT object */

ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag, samples,

samplingFrequency);

// Create a struct_message called BME280Readings to hold sensor readings

struct_message drone;

typedef struct {

wifi_ieee80211_mac_hdr_t hdr;

uint8_t payload[0]; /* network data ended with 4 bytes csum (CRC32) */

} wifi_ieee80211_packet_t;

39

void sendData(const uint8_t* broadcastAddress, struct_message data) {

// Send message via ESP-NOW

//Serial.println("sending data...");

esp_err_t result = esp_now_send(broadcastAddress, (uint8_t *) &data,

sizeof(data));

}

void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {

if (status != ESP_NOW_SEND_SUCCESS) {

// If transmission failed and maximum retry attempts not reached,

retry sending

if (retryAttempts < MAX_SENDS) {

//Serial.println("Retrying data transmission...");

sendData(mac_addr, drone); // Retry sending data

vTaskDelay(pdMS_TO_TICKS(RETRY_DELAY_MS));

retryAttempts++; // Increment retry counter

} else {

Serial.println("Delivery Fail");

retryAttempts = 0; // Reset retry counter

}

} else {

Serial.println("Delivery Success");

Serial.print("Number of tries: ");

Serial.println(retryAttempts);

retryAttempts = 0; // Reset retry counter on successful transmission

}

}

40

static esp_err_t event_handler(void *ctx, system_event_t *event);

static void wifi_sniffer_init(void);

static void wifi_sniffer_set_channel(uint8_t channel);

static const char

*wifi_sniffer_packet_type2str(wifi_promiscuous_pkt_type_t type);

static void wifi_sniffer_packet_handler(void *buff,

wifi_promiscuous_pkt_type_t type);

esp_err_t event_handler(void *ctx, system_event_t *event)

{

return ESP_OK;

}

void wifi_sniffer_init(void)

{

nvs_flash_init();

tcpip_adapter_init();

ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));

wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();

ESP_ERROR_CHECK(esp_wifi_init(&cfg));

ESP_ERROR_CHECK(esp_wifi_set_country(&wifi_country)); /* set country

for channel range [1, 13] */

ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));

ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_NULL));

ESP_ERROR_CHECK(esp_wifi_start());

ESP_ERROR_CHECK(esp_wifi_set_max_tx_power(78));

esp_wifi_set_promiscuous(true);

esp_wifi_set_promiscuous_rx_cb(&wifi_sniffer_packet_handler);

}

void wifi_sniffer_set_channel(uint8_t channel)

{

esp_wifi_set_channel(channel, WIFI_SECOND_CHAN_NONE);

}

const char * wifi_sniffer_packet_type2str(wifi_promiscuous_pkt_type_t

type)

{

switch(type) {

41

case WIFI_PKT_MGMT: return "MGMT";

case WIFI_PKT_DATA: return "DATA";

default:

case WIFI_PKT_MISC: return "MISC";

}

}

void wifi_sniffer_packet_handler(void* buff, wifi_promiscuous_pkt_type_t

type)

{

if (type != WIFI_PKT_MGMT)

return;

const wifi_promiscuous_pkt_t *ppkt = (wifi_promiscuous_pkt_t *)buff;

const wifi_ieee80211_packet_t *ipkt = (wifi_ieee80211_packet_t

*)ppkt->payload;

const wifi_ieee80211_mac_hdr_t *hdr = &ipkt->hdr;

int x = hdr->addr2[0]%4;

if (x != 0){

goto end;

}

for (int i = 0; i < DATABASE_COUNT; i++){

int count= 0;

for (int j = 0; j< 3; j++){

if (hdr->addr2[j] == database[i][j]){

count++;

if (count == 3){

goto end;

}

}

}

}

for (int i = 0; i < next_open_slot+1; i++){

int verified = 0;

42

int count= 0;

for (int j = 0; j< 3; j++){

if (lookup[i][j] == hdr->addr2[j]){

verified++;

if (verified == 3){

//printf("found at position: %d\n",i);

lookup[i][3]+=1;

goto end;

}

}

}

if (i == next_open_slot){

for (int j = 0; j< 3; j++){

lookup[i][j] = hdr->addr2[j];

}

lookup[i][3] =1;

next_open_slot++;

goto end;

}

}

end:

total_packets++;

int max = 0;

int max_index = 0;

//printf("Number of Packets: %d\n", total_packets);

if (total_packets > 150){

// prints out the matrix

for (int i = 0; i < DEVICE_COUNT; i++){

43

for (int j = 0; j < 4; j++){

printf("%02x:", lookup[i][j]);

}

printf("\n");

if (lookup[i][3] > max){

max = lookup[i][3];

max_index = i;

}

}

microseconds = micros();

for(int i=0; i<samples; i++)

{

vReal[i] = analogRead(CHANNEL);

vImag[i] = 0;

while(micros() - microseconds < sampling_period_us){

//empty loop

}

microseconds += sampling_period_us;

}

/* Print the results of the sampling according to time */

FFT.dcRemoval();

FFT.windowing(vReal, 256, FFT_WIN_TYP_HAMMING, FFT_FORWARD);

FFT.compute(vReal, vImag, 256, FFT_FORWARD);

FFT.complexToMagnitude(vReal, vImag, 256);

int found_drone = 0;

double frequency;

for (int i = 2; i < (samples / 4); i++) { // Start at 2 to skip DC

component

frequency = (i * samplingFrequency) / samples;

if (frequency > 200.0 && frequency < 500.0) { // Drone frequency range

44

if (vReal[i] > 40) { // Adjust threshold based on your calibration

found_drone = 1;

}

}

}

if (max >=5){

//Serial.println("Found the drone at UOI of %02x:%02x:%02x\n",

lookup[max_index][0], lookup[max_index][1], lookup[max_index][2]);

Serial.print("Found the drone at UOI of ");

Serial.print(lookup[max_index][0], HEX); // Print first byte as

hexadecimal

Serial.print(":");

Serial.print(lookup[max_index][1], HEX); // Print second byte as

hexadecimal

Serial.print(":");

Serial.println(lookup[max_index][2], HEX);

strcpy(drone.a, "Found the drone at UOI of ");

drone.b = lookup[max_index][0];

drone.c = lookup[max_index][1];

if (found_drone == 1){

drone.d = 5;

}

else{

drone.d = 3;

}

sendData(broadcastAddress2, drone);

}

else{

strcpy(drone.a, "Did not find a drone ");

drone.b = 0;

drone.c = 0;

drone.d = 0;

found_drone = 0;

45

sendData(broadcastAddress2, drone);

}

total_packets = 0;

memset(lookup, 0, sizeof(lookup));

next_open_slot = 0;

}

}

// the setup function runs once when you press reset or power the board

void setup() {

// initialize digital pin 5 as an output.

Serial.begin(115200);

delay(10);

wifi_sniffer_init();

pinMode(LED_GPIO_PIN, OUTPUT);

WiFi.mode(WIFI_MODE_STA);

Serial.println(WiFi.macAddress());

WiFi.mode(WIFI_STA);

// dataQueue = xQueueCreate(10, sizeof(struct_message));

// Init ESP-NOW

if (esp_now_init() != ESP_OK) {

Serial.println("Error initializing ESP-NOW");

return;

}

// Once ESPNow is successfully Init, we will register for Send CB to

// get the status of Trasnmitted packet

esp_now_register_send_cb(OnDataSent);

// Add peer

memcpy(peerInfo.peer_addr, broadcastAddress2, 6);

46

peerInfo.channel = 0;

peerInfo.encrypt = false;

// Add peer

if (esp_now_add_peer(&peerInfo) != ESP_OK){

Serial.println("Failed to add peer");

return;

}

}

void loop() {

if (digitalRead(LED_GPIO_PIN) == LOW)

digitalWrite(LED_GPIO_PIN, HIGH);

else

digitalWrite(LED_GPIO_PIN, LOW);

vTaskDelay(WIFI_CHANNEL_SWITCH_INTERVAL / portTICK_PERIOD_MS);

wifi_sniffer_set_channel(channel);

channel = (channel % WIFI_CHANNEL_MAX) + 1;

//esp_err_t result = esp_now_send(broadcastAddress, (uint8_t *) &drone,

sizeof(drone));

}

End of Sensor Code

Satellite/Receiver Code:

#include <esp_now.h>

#include <WiFi.h>

#include <string.h>

#include <esp_system.h>

47

#define ALERT 5

// Define the MAC address for broadcast

uint8_t broadcastAddress[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xA4, 0xE0};

typedef struct {

char a[32];

int b;

int c;

int d;

} struct_message;

struct_message incomingReadings;

struct_message myData;

void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len)

{

Serial.println("Data received.");

memcpy(&myData, incomingData, sizeof(myData));

Serial.print("Bytes received: ");

Serial.println(len);

Serial.print("Message: ");

Serial.println(myData.a);

Serial.print(myData.b, HEX);

Serial.print(":");

Serial.print(myData.c, HEX);

Serial.print(":");

Serial.println(myData.d, HEX);

if (myData.d > 0){

analogWrite(ALERT, 51*myData.d);

}

else{

analogWrite(ALERT, myData.d);

}

}

void setup() {

Serial.begin(115200);

delay(1000);

WiFi.mode(WIFI_MODE_STA);

48

Serial.println(WiFi.macAddress());

if (esp_now_init() != ESP_OK) {

Serial.println("Error initializing ESP-NOW");

return;

}

esp_now_register_recv_cb(OnDataRecv);

}

void loop() {

}

8.3 Component Data Sheets

For components purchased from Amazon no datasheet was available, but a link to the component
has been included.

● ESP32 C3 WROOM-02
● CP2102 USB to UART
● First microphone we purchased (lower quality)
● Second microphone we purchased (slightly higher quality)
● Vibration Motors
● RGB LED
● Voltage Regulator

All other components (diodes, capacitors, resistors, MOSFETs, and connectors) are stock
components from the Innovation Lab.

49

https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.silabs.com/documents/public/data-sheets/cp2102n-datasheet.pdf
https://www.amazon.com/DAOKI-Sensitivity-Microphone-Detection-Arduino/dp/B00XT0PH10
https://www.amazon.com/dp/B07DRGF8C2?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.amazon.com/dp/B07Q1ZV4MJ?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.mouser.com/datasheet/2/180/IN_PI55TAT_X_R_X_G_X_B_v1_4-3006829.pdf
https://www.diodes.com/assets/Datasheets/AP2112.pdf

